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Abstract
The Hermitian Cartesian quantum momentum operator p for an embedded
surface M in R3 is proved to be a constant factor −ih̄ times the mean
curvature vector field Hn added to the usual differential term. With use
of this form of momentum operators, the operator-ordering ambiguity exists
in the construction of the correct kinetic energy operator and three different
operator-orderings lead to the same result.

PACS numbers: 02.30.Tb, 03.65.Ta, 04.60.Ds

1. Introduction

For a particle moving on the curved smooth (regular) surface M embedded in R3, which is
parameterized by two local coordinates (ξ, ζ ), the quantum kinetic energy operator takes the
following form,

T ≡ − h̄2

2m
∇2 = − h̄2

2m

1√
g

∂µgµυ√
g∂υ , (1)

where

∇2 = ∂i∂i = 1√
g

∂µgµυ√
g∂υ (2)

is the Laplace–Beltrami operator [1]. The symbol ∂ stands for differential operator as
usual. The metric tensor gµυ is defined via the length element square ds2 = gµυ dxµ dxυ

and dσ = √
g dξ dζ is the area element on the surface. The factor g ≡ det(gµυ) is the

determinant of the matrix formed by the metric tensor. In this paper the Latin indices (i, j, k)

are used to denote the Cartesian coordinates (x, y, z) with xi = xi and Greek indices (µ, υ)

to denote the local ones (ξ, ζ ) with xµ = gµυxν . The convention the repeated indices mean
summation is implied unless specified. Only two-dimensional surface embedded in the three-
dimensional Euclidean space is addressed in this paper because in majority of the realistic
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constraint problems, the motion is on the two-dimensional curved surfaces [2, 3]. However,
our conclusion can be readily generalized to the higher-dimensional manifold.

For the constraint motion, the quantum kinetic energy operator can be rewritten into a
form depending on the generalized momentum operators pµ as [1]

T ≡ 1

2m

1

g1/4
pµg1/4gµυg1/4pυ

1

g1/4
(3)

where the generalized momentum operators pµ (µ = ξ, ζ ) are with �µ ≡ �υ
µυ being the

once-contracted affine connection

pµ = −ih̄(∂µ + 1/2�µ). (4)

In the kinetic energy (3), the four identical g1/4 factors are used to fix the operator-ordering
problem, and they are so inserted that the standard result (1) can be restored. In classical limit,
these factors drop out and equation (3) becomes

T ≡ 1

2m
gµυpµpυ. (5)

Similarly, when examining the same constraint motion in Cartesian coordinates with use
of the Hermitian form of Cartesian momentum pi (i = x, y, z), the elaboration of the kinetic
energy operator should also take appropriate account of the operator-ordering problem. In
analogy of (3) the quantum kinetic energy operator may take the following form

T = 1

2m

3∑
i=1

3∑
i=1

1

fi

pif
2
i pi

1

fi

, (6)

where the Cartesian momentum pi depends on two independent curved coordinates (ξ, ζ ) and
their first derivatives only, and the operator-ordering factors fi (i = x, y, z) are non-trivial
functions depending on the local coordinates (ξ, ζ ) too. When the constraint is removed or the
motion is in classical limit, the factors fi(x, y, z) cancel out; and the kinetic energy operator
(6) reduces to be its usual form

T = 1

2m
pipi. (7)

It can be anticipated that the Hermitian form of the Cartesian quantum momentum operators
pi may take a form similar to (4), which proves to be

pi = −ih̄(∂i + Hni), (8)

where H is the mean curvature of the surface M in which n = (nx, ny, nz) denoting the
unit normal vector on the surface, and the quantity Hn is an existing geometric invariant in
differential geometry, the so-called mean curvature vector field [4].

This paper is organized as what follows. A proof of result (8) is given in section 2.
The condition for the operator-ordering factors fi being able to convert equation (6) into
equation (1) is derived in section 3, which is found to depend on the mean curvature H
too. However, the way of inserting fi into pipi (7) is not unique, and two other ways of
the insertion can yield the correct result (1), as shown in section 4. To illustrate the abstract
formulae obtained, the explicit results for two surfaces are given in section 5. In final section 6,
some remarks are provided.

2. The Hermitian Cartesian quantum momentum operator

The standard representation of the curved smooth surface M embedded in R3 is

r(ξ, ζ ) = (x(ξ, ζ ), y(ξ, ζ ), z(ξ, ζ )). (9)
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The covariant derivatives of r (9) are rµ = ∂r/∂xµ, and then the metric tensor gµυ is
easily formed as gµυ ≡ rµ · rυ . The normal vector at point (ξ, ζ ) is n = rξ × rζ /

√
g. The

contravariant derivatives rµ ≡ gµυrυ are the generalized inverse (or pseudoinverse, or Moore–
Penrose inverse) of the covariant ones rµ for we have rµ · rυ = gµαrα · rυ = gµαgαυ = δµ

υ .
The derivatives rµ and rυ actually constitute the transformation matrix between ∂i and ∂µ, and
explicitly we have

∂i = x
µ

i ∂µ, and ∂µ = xi
µ∂i . (10)

In consequence, operator ∂i∂i = x
µ

i ∂µxυ
i ∂υ is the Laplace–Beltrami operator (2) for the

surface,

∂i∂i = x
µ

i ∂µxυ
i ∂υ = rµ∂µ · rυ∂υ = gµυ∂µ∂υ − �µυ

µ ∂υ = ∇2, (11)

where the Gauss formula ∂µrυ = −�υ
γµrγ + bυ

µn [4] is used. Using the Bohm’s rule [5], we
obtain the Hermitian form of the operators −ih̄∂i , and it is

pi ≡ 1

2
{(−ih̄∂i + (−ih̄∂i)

†}

= −ih̄

{
x

µ

i ∂µ +
1

2
√

g
∂µ

(√
gx

µ

i

)}
= −ih̄

{
x

µ

i ∂µ + Hi

}
, (i = 1, 2, 3), (12)

where

Hi ≡ 1

2
√

g
∂µ

(√
gx

µ

i

)
(13)

is the constraint induced term. Rewriting (13) into the vector form, we see

H ≡ 1

2
√

g
∂µ(

√
grµ) = 1

2
√

g
∂µ(

√
ggµυ∂νr) = 1

2
∇2r = Hn. (14)

In the last step, the formula ∇2r = 2Hn [6] is used. For those who are unfamiliar
with this formula, another straightforward proof is available. Recalling the Gauss formula
∂υrµ = −�µ

γυrγ + bµ
υ n [4] and using two relations �υ

µυ = ∂µ ln
√

g and bµ
µ ≡ gµυbµυ = 2H

[4], we have, for H,

H = 1
2

(
∂µrµ + �υ

µυrµ
) = 1

2

(−�υ
µυrµ + bµ

µn + �υ
µυrµ

) = Hn. (15)

Thus, the Hermitian Cartesian momentum p (12) is in its final form

p = −ih̄(rµ∂µ + Hn). (16)

When the motion is constraint-free or in a flat plane, i.e., when H = 0, the constraint-induced
terms Hn vanish. Then the Cartesian momentum operator (16) reproduces its usual form as

p = −ih̄∇. (17)

3. Kinetic operator in terms of the Hermitian Cartesian momentum operators

With use of the Hermitian form of momentum operator (16), the correct kinetic energy operator
can no longer be expressed by

T = 1

2m

(
p2

x + p2
y + p2

z

)
, (18)
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which will be shortly seen to include an excess positive term (h̄2/2m)H 2 in comparison with
the correct kinetic operator (1),

1

2m

(
p2

x + p2
y + p2

z

) = − h̄2

2m
∇2 +

h̄2

2m
H 2. (19)

So, the operator-ordering problem must be taken into consideration, and we can resort to the
form of equation (6). Substituting pi (16) into equation (6), we have

T = 1

2m

3∑
i=1

1

fi(x, y, z)
pifi(x, y, z)fi(x, y, z)pi

1

fi(x, y, z)

= − h̄2

2m

3∑
i=1

(
1

fi

x
µ

i ∂µfi + Hi

) (
fix

υ
i ∂υ

1

fi

+ Hi

)

= − h̄2

2m

3∑
i=1

(
x

µ

i ∂µ + Hi + x
µ

i (∂µ ln fi)
)(

xυ
i ∂υ + Hi − xυ

i (∂υ ln fi)
)

= − h̄2

2m

(
x

µ

i ∂µ + Hi + Ri

)(
xυ

i ∂υ + Hi − Ri

)
, (20)

where

Ri ≡ x
µ

i (∂µ ln fi), (no summation over two repeated indices i). (21)

Expanding the right-hand side of equation (20), we find

T = − h̄2

2m

(
x

µ

i ∂µxυ
i ∂υ + x

µ

i ∂µHi − x
µ

i ∂µRi + Hix
υ
i ∂υ + Rix

υ
i ∂υ + H 2

i − R2
i

)
= − h̄2

2m

(
x

µ

i ∂µxυ
i ∂υ +

{
2Hix

µ

i

}
∂µ +

{
x

µ

i ((∂µHi) − (∂µRi)) + HiHi − RiRi

})
. (22)

Because of H = Hn and n = rξ × rζ /
√

g, i.e., H · rµ = 0, (µ = ξ, ζ ), the term in the first
braces { } in (22) vanishes. However, if Ri = 0, i.e., the operator-ordering factors fi are
equal to constant, the terms in the second braces { } in (22) have nonzero contribution that is
−H 2. To see this fact, we need to use the Weingarten formula ∂µn ≡ nµ = −bµυrυ [4] and
a relation rµ · ∂µn = −rµ · rυbµυ = −gµυbµυ = −2H [4]. Then H-dependent term in the
second braces { } in (22) is then x

µ

i (∂µHi) + HiHi = rµ · (∂µH) + H · H = −H 2. So, if fi =
const, i.e., R = 0, the result (19) holds. However, the presence of the operator-ordering terms
Ri may cancel out the excess terms, making the terms in the second braces { } in (22) vanish.
This requirement leads to the following equation in vector form

rµ · ((∂µH) − (∂µR)) + (HiHi − RiRi) = 0. (23)

It is a nonlinear differential equation and trivial case fi = const, R = 0, can never solve it
unless H = 0. A particular solution for R is evidently,

R = H = Hn. (24)

When the motion is constraint-free or in a flat plane, i.e., when H = 0, the factors fi become
trivial for fi = const from equation (21).

4. Other two operator-orderings in a kinetic operator

In our previous concrete approach [7], we use the following form of the kinetic operator:

T 1 = 1

2m

3∑
i=1

1

fi(x, y, z)
pifi(x, y, z)pi. (25)
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It is also tempted to use

T 2 = 1

2m

3∑
i=1

pifi(x, y, z)pi

1

fi(x, y, z)
. (26)

The operator-ordering problem presented in equations (25) and (26) differs from equation (6)
only in the way of distribution of the operator-ordering factors fi(x, y, z). Next, we prove
that these factors fi(x, y, z) have exactly the same form as is given by equation (24).

Expanding the right-hand side of equations (25) and (26), we find respectively

T 1 = − h̄2

2m

(
x

µ

i ∂µ + Hi + Ri

)(
xυ

i ∂υ + Hi

)
= − h̄2

2m

(
x

µ

i ∂µxυ
i ∂υ +

{
(2Hi + Ri)x

υ
i

}
∂υ +

{
x

µ

i (∂µHi) + RiHi + HiHi

})
, (27)

and

T 2 = − h̄2

2m

(
x

µ

i ∂µ + Hi

)(
xυ

i ∂υ + Hi − Ri

)
= − h̄2

2m

(
x

µ

i ∂µxυ
i ∂υ − {

Rix
µ

i

}
∂µ +

{
x

µ

i ((∂µHi) − (∂µRi)) + Hi(Hi − Ri)
})

. (28)

This requirement that the terms in two braces { } in (27) vanish simultaneously leads to a set
of two equations:{

R · rµ = 0, (µ = ξ, ζ )

−H 2 + R · H = 0.
(29)

The same requirement for (28) leads to another set of two equations:{
R · rµ = 0, (µ = ξ, ζ )

rµ · (∂µH) − (∂µR) + H · (H − R) = 0.
(30)

The first equation in either set (29) or (30) R · rµ = 0 states nothing but a fact that the direction
of R is along the normal n. The second equation in either set (29) or (30) determines the
magnitude of R, and the unique solution is R = H .

5. Examples

In this section, two ideal quantum dots, the spheroidal surface [2] and the toroidal surface [3]
will be utilized to illustrate the abstract results developed above.

5.1. Operators on the spheroidal surface

The spheroidal surface is with two local coordinates θ ∈ [0, 2π), ϕ ∈ [0, 2π),

r = (x, y, z) = (a sin θ cos ϕ, a sin θ sin ϕ, b cos θ), (31)

where a and b denote two distinct axes. The convariant derivatives rµ and contravariant
derivatives rµ can be easily computed and the results are respectively(

rθ

rϕ

)
=

(
a cos θ cos ϕ, a cos θ sin ϕ, −b sin θ

−a sin θ sin ϕ, a sin θ cos ϕ, 0

)
, (32)
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(
rθ ≡ gθυrυ

rϕ ≡ gϕυrυ

)

= 1

a

(
G(a, b, θ) cos θ cos ϕ, G(a, b, θ) cos θ sin ϕ, −G(a, b, θ)b/a sin θ

− csc θ sin ϕ, csc θ cos ϕ, 0

)
,

(33)

where G(a, b, θ) = 2/(1 + ε2 + (1 − ε2) cos 2θ) with ε = b/a. The normal n and the mean
curvature H are given by respectively

n =
√

G(a, b, θ)(ε sin θ cos ϕ, ε sin θ sin ϕ, cos θ), (34)

H(a, b, θ) = −b/(4a2)(3 + ε2 + (1 − ε2) cos 2θ)G(a, b, θ)3/2. (35)

The Hermitian Cartesian momentum operators pi (i = 1, 2, 3) are

px = −ih̄
1

a
(cos θ cos ϕG(a, b, θ)

∂

∂θ
− csc θ sin ϕ

∂

∂ϕ
− F(a, b, θ) cos ϕ sin θ), (36)

py = −ih̄
1

a
(cos θ sin ϕG(a, b, θ)

∂

∂θ
+ cos ϕ csc θ

∂

∂ϕ
− F(a, b, θ) sin θ sin ϕ), (37)

pz = ih̄

(
b

a2
sin θG(a, b, θ)

∂

∂θ
+

1

b
F(a, b, θ) cos θ

)
, (38)

where F(a, b, θ) = ε2(3 + ε2 + (1 − ε2) cos 2θ)G(a, b, θ)2/4. The factor functions (fx, fy,

fz) determined by equation Ri = Hni (21) have special solutions:

fx = G(a, b, θ)1/4(cos θ)
a2+b2

2a2 , (39)

fy = G(a, b, θ)1/4(cos θ)
a2+b2

2a2 , (40)

fz = G(a, b, θ)1/4 sin θ. (41)

When the spheroid becomes a sphere with a = b, we have ε = 1,G(a, b, θ) = 1,

F (a, b, θ) = 1 and H(a, b, θ) = −1. All results above readily reduce to those for sphere [7].

5.2. Operators on the toroidal surface

The toroidal surface is with two local coordinates θ ∈ [0, 2π), ϕ ∈ [0, 2π),

r = ((a + b sin θ) cos ϕ, (a + b sin θ) sin ϕ, b cos θ), (a > b)

where a and b denote two distinct radii. The convariant derivatives rµ and contravariant
derivatives rµ can be easily computed and the results are respectively(

rθ

rϕ

)
=

(
b cos θ cos ϕ, b cos θ sin ϕ, −b sin θ

−(a + b sin θ) sin ϕ, (a + b sin θ) cos ϕ, 0

)
, (42)

(
rθ ≡ gθυrυ

rϕ ≡ gϕυrυ

)
=

(
cos θ cos ϕ

b
,

cos θ sin ϕ

b
, − sin θ

b

− sin ϕ

a+b sin θ
,

cos ϕ

a+b sin θ
, 0

)
. (43)

The normal n and the mean curvature H are given by respectively

n = (sin θ cos ϕ, sin θ sin ϕ, cos θ), (44)
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H = − a + 2b sin θ

2b(a + b sin θ)
. (45)

With use of the above expression for mean curvature H (45), the Hermitian Cartesian
momentum operators pi (i = 1, 2, 3) are given by

px = −ih̄

(
cos θ cos ϕ

b

∂

∂θ
− sin ϕ

a + b sin θ

∂

∂ϕ
+ H sin θ cos ϕ

)
, (46)

py = −ih̄

(
cos θ sin ϕ

b

∂

∂θ
+

cos ϕ

a + b sin θ

∂

∂ϕ
+ H sin θ sin ϕ

)
, (47)

pz = ih̄

(
sin θ

b

∂

∂θ
− H cos θ

)
. (48)

The factor functions (fx, fy, fz) determined by equation Ri = Hni (21) have special
solutions:

fx = (a + b sin θ)
1
2

a2

a2−b2 (1 + sin θ)
1
4

a−2b
a−b (sin θ − 1)

1
4

a+2b
a+b , (49)

fy = (a + b sin θ)
1
2

a2

a2−b2 (1 + sin θ)
1
4

a−2b
a−b (sin θ − 1)

1
4

a+2b
a+b , (50)

fz =
√

(a + b sin θ) sin θ. (51)

In an extreme case a = 0, the torus becomes a sphere of radius b, and all results above
also reduce to those for sphere [7].

6. Remarks and summary

In classical mechanics for a particle moving on the curved surface M embedded in R3, the
local curved coordinates (ξ, ζ ) on M and the Cartesian coordinates (x, y, z) in R3 seem to
play equal roles in the description of its classical motion, for the results written in these
two coordinate systems are related to each other by coordinate transformation. On the other
hand, in light of the canonical variable, neither the Cartesian coordinates nor the Cartesian
momentum can be taken as canonical variables. Any pair of Cartesian variables (xi, pi) is
no longer canonical conjugate to each other. Even looking for the canonically conjugate
variables for these Cartesian variables xi, pi does not seem to be a physically meaningful task.
In contrast, since the variables canonically conjugate to the local coordinate variables (ξ, ζ )

naturally exist, the quantization based on the conjugate variables can be easily preformed
with the help of the so-called canonical quantization rules. However, though so far quantum
mechanics uses the local coordinate system only, it contains nice results associated with the
Cartesian coordinates.

The present work shows a compact and abstract result for Hermitian Cartesian momentum
operators describing the particle moving on the curved surface M embedded in R3, and it is a
constant factor −ih̄ times the mean curvature vector field Hn added to the usual differential
rµ∂µ. With use of this Cartesian momentum, the same operator-ordering factors can be
distributed in three different ways and all lead to the correct quantum kinetic energy. These
operator-ordering factors become dummy in classical limit and reduce to be constant for
the motion is constraint-free or in the flat plane. Thus, the present study demonstrates that
the Cartesian coordinates is also useful in quantum mechanics and casts a new insight into
the understanding of the classical correspondence of quantum mechanics [8–10].
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